Myc and PI3K/AKT signaling cooperatively repress FOXO3a-dependent PUMA and GADD45a gene expression
نویسندگان
چکیده
Growth factor withdrawal inhibits cell cycle progression by stimulating expression of growth-arresting genes through the activation of Forkhead box O transcription factors such as FOXO3a, which binds to the FHRE-responsive elements of a number of target genes such as PUMA and GADD45a. Following exposure of cells to growth factors FOXO3a-mediated transcription is rapidly repressed. We determined that repression correlates with activation of PI3K/AKT pathway leading to FOXO3a phosphorylation and release of FOXO3a protein from PUMA and GADD45a chromatin. We show here that Myc significantly and selectively contributes to repression of FOXO-mediated expression of PUMA and GADD45a. We found that in Myc deprived cells inhibition of PUMA and GADD45a following serum stimulation is impaired and that Myc does not interfere with p53 induction of PUMA transcription. We observed that following activation, Myc is rapidly recruited to PUMA and GADD45a chromatin, with a concomitant switch in promoter occupancy from FOXO3a to Myc. Myc recruitment stimulates deacetylation of Histone H3 and H4 and methylation of lysine 9 in H3 (H3K9me2) on both PUMA and GADD45 chromatin. These data highlight a Myc role on cell growth by selectively inhibiting FOXO3a induced transcription of PUMA and GADD45.
منابع مشابه
Reciprocal control of Forkhead box O 3a and c-Myc via the phosphatidylinositol 3-kinase pathway coordinately regulates p27Kip1 levels.
B cell receptor (BCR) engagement of murine WEHI 231 immature B lymphoma cells leads sequentially to a drop in NF-kappa B and c-Myc, and induction of the p27(Kip1) cyclin-dependent kinase inhibitor, which promotes growth arrest and apoptosis. BCR engagement was recently shown to induce a drop in phosphatidylinositol 3-kinase (PI3K)/Akt signaling, preceding the increase in p27. As induction of p2...
متن کاملFOXO3a-dependent regulation of Puma in response to cytokine/growth factor withdrawal
Puma is an essential mediator of p53-dependent and -independent apoptosis in vivo. In response to genotoxic stress, Puma is induced in a p53-dependent manner. However, the transcription factor driving Puma up-regulation in response to p53-independent apoptotic stimuli has yet to be identified. Here, we show that FOXO3a up-regulates Puma expression in response to cytokine or growth factor depriv...
متن کاملLong non-coding RNA FOXO1 inhibits lung cancer cell growth through down-regulating PI3K/AKT signaling pathway
Objective(s): Lung cancer is one of the most common malignant tumors, which seriously threatens the health and life of the people. Recently, a novel long non-coding RNA (lncRNA) termed lncFOXO1 was found and investigated in breast cancer. However, the effect of lncFOXO1 on lung cancer is still ambiguous. The current study aimed to uncover the functions of lncFOXO1 in l...
متن کاملExpression Analysis of Foxo3a Gene in Pediatric Acute Lymphoblastic Leukemia in Southern Iranian Population
Background: Acute lymphoblastic leukemia (ALL), the most common childhood cancer with a peak incidence in children from 2-5 years old, might be associated with poor prognosis and resistance to therapy in specific cytogenetic backgrounds. FoxO3a, a member of the forkhead class ‘O’ (FoxO) transcription factors, is a main downstream target of PI3K/AKT pathway which regulates different ...
متن کاملFOXO3a is a major target of inactivation by PI3K/AKT signaling in aggressive neuroblastoma.
Neuroblastoma is a pediatric tumor of the peripheral sympathetic nervous system with a highly variable prognosis. Activation of the phosphoinositide 3-kinase (PI3K)/AKT pathway in neuroblastoma is correlated with poor patient prognosis, but the precise downstream effectors mediating this effect have not been determined. Here we identify the forkhead transcription factor FOXO3a as a key target o...
متن کامل